

LA-UR-20-20056

Approved for public release; distribution is unlimited.

Title: SURF model calibration strategy

Author(s): Menikoff, Ralph

Intended for: LANL seminar

Issued: 2020-01-06

SURF model calibration strategy

Ralph Menikoff, T-1

January, 2020

Reactive burn model

1. EOS model

reactants, products partially burned HE (mixture rule) $P(V,e,\vec{\lambda})$ where $\vec{\lambda}=$ reaction progress variable(s) Tacitly assumes partly burned HE is homogeneous and in thermodynamic equilibrium

- 2. Reaction rates (empirical to account for heterogeneities)
 Calibrate rate to detonation data
 - Shock ignition regime
 Pop plot data
 Embedded gauge profiles
 Complex loading conditions
 - Propagation regime Curvature effect
 Failure diameter

SURF model Rate

 λ is mass fraction of products s is reaction progress variable

$$\begin{split} \lambda &= g(s) \\ &= 1 - \exp(-s^2) \quad \text{cylindrical hot spots} \\ s &= [-\ln(1-\lambda)]^{1/2} \\ \mathrm{d} s/\mathrm{d} t &= \mathrm{Rate}(P_s, P), \quad \underline{P_s = \mathrm{lead shock pressure \& } P = \mathrm{local pressure}} \\ &= \begin{bmatrix} (P/P_s)^n & \text{for } P < P_s \\ (P/P_s)^{n_{hi}} & \text{for } P > P_s \end{bmatrix} \times \mathcal{R}(P_s) \end{split}$$

Standard rate

$$(\mathsf{d}/\mathsf{d}t)\lambda = (\mathsf{d}g/\mathsf{d}s) \times (\mathsf{d}s/\mathsf{d}t)$$
$$= 2[-\ln(1-\lambda)]^{1/2}(1-\lambda) \times \operatorname{Rate}(P_s, P)$$

Cut-off for finite reaction zone: $g(s_c) = 1$ at finite s_c

Rate $\mathcal{R}(P_s)$

Fitting form 4 (LA-UR-17-31015, SURFplus model calibration for PBX 9502)

Pressure regions

$$P_{\rm s} < P_{\rm 0}$$

$$P_0 < P_s < P_{low}$$

$$P_{low} < P_s < P_1$$

$$P_1 < P_s < P_{hi}$$

$$P_{hi} < P_s$$

rate=0, weak shock not effective at generating hot spots

low pressure cutoff, $\mathcal{R} = \tilde{C} (P_s - P_0)^{\tilde{n}}$

ignition regime, $\mathcal{R} = C P_s^{f_n}$ to fit Pop plot data

propagation regime, high pressure cutoff

hot spots saturate (can add bulk thermal rate)

Rate model has 8 parameters: P_0 , P_{low} , P_1 , P_{hi} C, f_n

n. nhi

Shock ignition: Pop plot data

- PBX 9501 variation with porosity
- PBX 9502 variation with lot Large systematic variation with initial temperature (-55 and 75 C)
- Scatter in data (6 % rms up to 30 % for outliers on log-log scale) Experimental uncertainties and PBX heterogeneities Rate model can not accurately fit all data
- Calibration data Pop plot calibration should cover wide range in shock pressure

Calibration to Pop plot data

Run distance from simulated lead shock pressure vs distance Pop plot dominated by 2 model parameters: C and f_n Metric for calibration

rms relative error of run distance relative to fit to Pop plot data

- Shallow trough in metric Correlated changes in C and f_n have small effect on metric
- Model Pop plot also affected by parameters n_{hi} and P_1

Embedded gauge data

- Transition-to-detonation should agree with fit to Pop plot data
 Subject to scatter in Pop plot data
- Shock rise time due to small mis-alignment of gauge package
 Gauge averages over about 1 cm transverse to propagation direction
- VN spike clipped due to response time of gauge (10 to 20 ns)
- Simulated shape of profiles depend on model function g(s) and parameter n_{hi}

Curvature effect experiments

Unconfined rate stick

Diameter effect: axial detonation speed vs 1/radius

For curvature effect, also measure front shape

 $D_n(\kappa)$ determined parametrically from derived κ and D_n along front

Issue: For large κ , D_n depends on rate stick diameter

- Boundary layer within 0.5 to 1 mm of HE/air interface
 - At boundary lead shock is sonic and not supported by reaction along streamline
 - Large transverse pressure gradient along shock front
- Assumptions of first order DSD theory break down Outside boundary layer assumptions are valid
- HE weakly confined for almost all applications Due to gap/tolerance at HE/inert interface
- Dependence on PBX lot ⇒ model uncertainty

Unconfined rate stick

PBX 9502 experiments by Larry Hill

compare 3 diameters with normalized radius

aspect ratio is 1 to 1 circle 1 mm from boundary

 κ computed from front shape

P based on reactants FOS and D_n computed from front shape

$D_n(\kappa)$ computed from front shape for $\kappa > 0.25/\text{mm}$

 D_n depends on rate stick diameter corresponds to boundary layer

Curvature effect calibration

For small to moderate κ (when assumptions of DSD theory hold)

- ODEs for 1-D quasi-steady reaction zone profile Front curvature κ is parameter Trajectory starts at lead shock Singularity at sonic point (u + c = D) unless $\sigma \mathcal{R} = u \kappa$ (rate condition)
- Shooting problem Vary D_n and evaluate trajectory Until rate condition at sonic point is meet Solution exists only up to moderate κ
- Slope of $D_n(\kappa)$ depends on reaction-zone width to sonic point Determined by rate in high pressure regime
- Extend ODEs to SURFplus fast/slow reactions $D_n(\kappa)$ curve has qualitatively different shape with carbon clustering Alternatively, fast rate for $\lambda < \lambda_{switch}$ and slow rate for $\lambda > \lambda_{switch}$

PBX 9502 curvature effect

0.25

0.75

κ (1/mm)

10 mm diameter rate stick (Larry Hill, shot 15-2851) xRage simulation with AMR to 0.004 mm

1.25

Curvature effect – fast/slow reaction

PBX 9501 diameter effect

PBX 9501 – fast reaction only

Failure diameter less than 1.6 mm Black triangles: bounds for diameter effect limiting detonation speed DSD needs $D_n(\kappa)$ to extend to smaller D_n than limiting D_n

PBX 9502 – fast/slow reaction

Failure diameter approximately 9 mm

As κ increases: sonic point goes from end of slow to end of fast reaction large change in reaction-zone width to sonic point

Red circle: detonation speed for 1 inch cylinder test

Failure diameter and front shape

2-D simulations of unconfined rate stick Experiments used to determine $D_n(\kappa)$ and front shape

- Computationally expensive compared to 1-D shock initiation Need to resolve reaction zone Cylinder length at least 4 diameters Iterate to fit failure diameter and limiting detonation speed
- Parameter n and SURFplus rate n affects reaction-zone width and failure (but not Pop plot) Lower rate for pressure decreasing gradient behind front Important for non-planar shock initiation (fragment impact) SURFplus slow rate important for curvature effect and failure
- Fit shape of detonation front More robust to fit front shape than $D_n(\kappa)$ for large κ since κ depends on first and second derivative of front shape Due to boundary layer, front shape more fundamental than $D_n(\kappa)$

ZND reaction-zone profile

Experiments to measure 1-D reaction-zone profile have been tried Large shot-to-shot variation in VN spike and reaction-zone width Polarized light micrograph of PBX 9501 [Skidmore et al., 1998]

reactive HF burn models treat PBX as homogeneous

Red lines 100 microns apart Estimated reaction-zone width 25 to 75 microns < av grain size Expect reaction-zone profile to vary with local grain/binder variations

Red circles PDV probe spot size 500 micron diameter Velocity varies over spot size Number of grains small & variable Profile varies due to poor statistics